

Software Design Document (v.2)

February 25, 2019

Team Amadeus

Mentor: Austin Sanders
Sponsors: Dr. Hélène Coullon & Frédéric Loulergue

Members: Wyatt Evans, Kyle Krueger, Melody Pressley, Evan Russell

Table of Contents

1. Introduction 2

2. Implementation Overview 3

3. Architectural Overview 4

4. Module and Interface Descriptions 5
4.1. Graphical User Interface 5
4.2. Assembly Data Structure 6
4.3. Plugin Framework and Integration 7
4.4. Code Generation 9
4.5. Deployment Simulation 9
4.6. Saving and Loading 10

5. Implementation Plan 11

6. Conclusion 12

1

1. Introduction

Software deployment is an integral part of modern software development. Whether
installing a new security software on all the computers in an office network, or updating
an app on thousands of devices across the cloud, software needs to be deployed often and
efficiently. However, deploying large, complex pieces of software can be a difficult
matter, and since all software is unique, all software deployment processes must also be
unique.

There have been numerous solutions developed to make this process easier, such as
Ansible or Kubernetes. However, most are inefficient and take much longer to deploy
than they should, or are made for simpler micro-deployments. So far there have been no
significant solutions that take advantage of concurrency and parallelism to the extent that
they could.

Our project sponsor, Dr. Hélène Coullon, is a researcher with the STACK team at Inria -
the French national research institute on computer science. Their work has produced
Madeus: a theoretical model for software deployment. Madeus defines the deployment
process in parts via a well-defined mathematical syntax and a corresponding Petri
net-inspired diagram. The model also expresses every dependency between different
software components. This enables software deployment to be performed concurrently,
with different components executing deployment independently until a dependency is
required. (See Section 8, pg. 16 for more details).

MAD (the Madeus Application Deployer), also an Inria project, is a Python
implementation of the Madeus model; its goal is to allow users to deploy software
according to the model. MAD provides an explicit syntax to Madeus by defining all
aspects of it within Python modules. Together, MAD and Madeus have been found to
deploy software up to twice as fast as some of the competing software. However, the
efficiency of MAD’s execution and deployment has come at the cost of simplicity and
ease of use.

The team at Inria wants the Madeus model to be easier and more accessible for
developers, so that the efficiency of this model can be fully realized. Thus, our solution is
a GUI that enables users to utilize the Madeus model via the “Petri net-inspired
diagram[s]” described above, rather than the specifics of a Python class. Our GUI,named
the MAD Assembly Builder (MAB), will serve as a visualization tool for developers so

2

that they can focus on the creation of a diagram, and generate functional, deployable,
MAD code representative of their assembly without having to go through the tedious
process of coding it themselves.

In this document, we will be detailing the architecture of MAB, and showcasing how
each of the features fulfill the needs of our sponsors, as well as how they all connect into
the greater whole of MAB.

2. Implementation Overview

As mentioned, the best software solution to the problems described in the previous
section was determined to be a GUI. Based on this, we researched methods of
implementing this and evaluated what approaches best fit our problem and context. In
this section we will outline the technologies our system will use to maximize the desired
outcome.

The backbone of our GUI is Electron, a framework developed by GitHub. Electron is
used to build GUI applications, and provides a frontend using HTML/CSS and a backend
using JavaScript. Electron is incredibly easy to use, and enables our team to create a GUI
with minimal developmental overhead. Although Electron is somewhat notorious for
being wasteful of memory, this isn’t a major constraint for our project. Although we
should still be mindful of our GUI’s computational performance, most contemporary
computers will fare fine using Electron.

Being a GUI framework, Electron naturally divides its work between a frontend and a
backend. Electron’s frontend is powered by Chromium, enabling our team to design the
GUI’s look with HTML5 and CSS3. The backend is powered by Node.js, allowing us to
provide functionality to our GUI through JavaScript. The combined frontend and backend
not only give us the tools to develop a robust GUI, it also allows us to utilize any other
code libraries that are compatible with either.

Our solution allows users to build Madeus assemblies in a diagram format; as such, our
software must provide users with some kind of “canvas” to work with. Our system
implements this using Konva, a JavaScript canvas library for desktop applications (and
more). Because Konva is a JavaScript framework, it meshes well with Electron - using
Konva via Electron’s Node.js backend and its HTML-based frontend we can represent all
of the potential shapes and figures a user needs to express their software deployment in
terms of the Madeus model.

3

3. Architectural Overview

MAB’s design follows the Model-View-Controller (MVC) design paradigm. In this use
case, the model is a simplistic data-structure that dynamically houses the user’s created
assemblies, the view is an HTML based viewport with Konva objects acting as the
building blocks, and the controller is Electron.

Fig. 1: MVC Integration

The dynamically controlled data structure that is the model in this MVC is a JavaScript
array. The array was chosen over many other data structures natively present in
JavaScript because of its simplicity. Accessing and appending to arrays are amortized
O(1). The constant run time was extremely important for user interaction. The user
should never “feel” that anything was happening in the background; the user should only
see what is being presented to them in a timely manner.

MAB’s view is informed by the model and realized with HTML5, CSS3, and Konva.
HTML5 is a standardized system for presenting web pages on the World Wide Web
(WWW). Konva is an HTML5 canvas JavaScript framework that extends the 2d context
by enabling canvas interactivity for desktop and mobile applications. Konva enables the
user to build their assemblies with objects instead of predefined shapes that have no
interactivity.

Electron acts as the controller in the MVC. Electron is an open source library developed
by GitHub for building cross-platform desktop applications with HTML5, CSS3, and
JavaScript. Electron accomplishes this by combining Chromium “an open-source browser
project” and Node.js “an asynchronous event driven JavaScript runtime”. The use of

4

Electron as the controller provides seamless integration of needed modules into one
package. Electron’s native use of JavaScript allows the integration of the chosen dynamic
data structure, it’s use of Chromium affords the use of HTML5 and CSS3 to easily
present information (namely, Konva figures) to the user, and it’s overall design allows for
the easy packaging of applications for any operating system the user may choose.

4. Module and Interface Descriptions

The architecture of MAB involves six key modules and interfaces. These make up the
interface that the user builds assemblies with, the core creation of the assemblies, and the
implementation of plugins that perform additional tasks such as generating MAD code,
saving and loading assemblies, or simulating assembly deployment. In this section, those
six key parts of the architecture will be discussed and linked with each to provide a better
understanding of MAB as a whole.

4.1. Graphical User Interface

The Graphical User Interface will be the main tool that the user interacts with to create
and manipulate Madeus assemblies. The GUI will provide the actions to directly
manipulate the graphical elements of Madeus assemblies such as components, places,
transitions, and dependencies. The Graphical User Interface will be minimalist in design.
The user will drag and drop components to create them in the workspace. To create a
place inside a component the user will double click inside the component where they
wish to create the place. Transitions will require the user to left click on the source place
and right click on the destination place. Transitions will only be added to valid places.
Dependencies will be an attribute of places and transitions, and will be instantiated by the
user. The user will left click on the provide portion of the dependency and right click on
the use portion of the dependency to connect them. Figure 2 shows a screenshot of the
GUI with an assembly being in the process of development.

5

Figure 2: Prototype of GUI

4.2. Assembly Data Structure

For our software project, we need some kind of data structure to represent an assembly.
An assembly contains all of the components, places, transitions, and dependencies in a
given Madeus software deployment. This assembly is initially empty until the user begins
to populate the canvas with Madeus elements, at which point the data structure then
encapsulates all of the relevant information needed to represent the user’s assembly.

This data structure is integral to the entire functionality of our GUI - without a data
structure representing an assembly, users are simply dragging shapes onto a canvas. This
data structure is updated dynamically as an assembly is edited in the GUI canvas - it is an
in-memory formalization of the diagram in accordance with the Madeus model that is
updated as the GUI is used. Our assembly data structure provides information that
plugins need, enabling them to do operations such as saving and loading assemblies from
and into the GUI, generating MAD code, and simulating the deployment of an assembly.

As the GUI listens for events (i.e. the user creating their diagram) not only are figures
being created via Konva, but functions are also being called according to what Madeus
pieces are being added/modified, and the appropriate updates are made to the Assembly
data structure on the backend, whether it’s changing the name of an element or adding a

6

new place to the “place_list” of a given component. Figure 3 shows the general workflow
the assembly data structure concerns itself with.

Fig 3: Workflow of Assembly Data Structure

4.3. Plugin Framework and Integration

This component of the architecture is responsible for validating plugins, populating the
GUI with buttons related to each validated plugin, and finally executing those plugins on
the request of the user. This is vital to MAB’s extensibility, as it will continue to be
developed and added to beyond this year, primarily through the use of this plugin
framework.

7

Fig 4: Architecture of the Plugin Framework

The Plugin Manager validates plugins based on the structural requirements detailed in the
MAB Plugin Documentation (a separate document, available on our capstone website). In
particular, each plugin must have a driver.js file, which uses an IPC Renderer looking for
a specific message, dependent on the name of the plugin’s unique folder.

When a plugin is validated, its name and file path are stored and passed on to the Boot
part of MAB. The Boot is where the application is launched from, and is also the part of
the code that generates the GUI. At this point, a button is made that sends the message
that its appropriate driver file is waiting for, each time the button is clicked. These
buttons populate a particular drop-down menu in the GUI, where they can be quickly
accessed by the user either through clicking, or by a quick keyboard shortcut. This system
ensures that the plugins can be executed whenever the user wants, and however many
times they need it to.

8

4.4. Code Generation

MAB’s code generation is a core functionality provided by the GUI. It converts the user’s
generated diagram into executable Python code that can be run via MAD (developed by
Inria). It has been implemented into the GUI’s architecture via an extensible plugin (Fig.
4). This allows the code generation itself to be non-rigid, and act mostly independently of
the GUI (aside from the information retrieved from the assembly data structure). The
code generation plugin builds as many files as necessary, i.e. one file for each of the
created components, and one more overall file for the assembly as a whole.

MAB generates the required Madeus code by heavily relying upon the data structure that
was simultaneously being created by the user during assembly creation. The data
structure holds objects of types component, place, transition, and dependency. When the
plugin detects the type of the object, it generates the necessary code specific to that type.
It also detects all associated attributes of each type and continues to generate the
necessary/associated code needed. It does this for all the associated types and completes
the process by creating one final file, the driver file.

The driver file is responsible for creating any needed MAD objects: assemblies,
components, and/or dependencies. The code generation plugin is also responsible for
detecting what type of code needs to be created and for determining if the created code is
valid.

4.5. Deployment Simulation

The deployment simulation will consist of animations showing the deployment of the
Madeus assemblies in action. Each component will have a visual “token” that will
transition from place to place through the component’s transitions. Multiple transitions
coming out of the same place will have child tokens created and animated in parallel,
representing MAD’s ability to execute transitions concurrently. Each component will be
simulated independently of one another unless a dependency exists. Dependencies will
display the enabling or disabling in the use-provide or data-use-provide connections to be
determined by a token being present in the place and transition of the corresponding
components. Figure 5 shows an example of this process, with both of the tokens being
present in the initial places of each component.

9

Fig 5: Prototype of Deployment Simulation

4.6. Saving and Loading

This architectural component involves the saving and loading of a MAB user’s assembly
to and from the YAML file format. This will be implemented into MAB as a plugin, and
it must be able to accurately replicate the Assembly’s detailed parts, including any
connections they may have and their positions in the MAB workspace.

Fig 6: Saving and Loading Process

10

Since this component will be implemented as a plugin, it will be executed at the user’s
command through buttons in the GUI. When the user saves their assembly, the data
structure will be stored into the YAML file, alongside data from the workspace which
will include details such as the coordinates for each part of the assembly and what
connections exist. This data will then be stored into the YAML file created or updated at
the user’s desired location.

When the user loads their assembly, the workspace will be cleared, and the assembly will
be visually loaded based on the coordinates and types stored in the YAML file. Then, the
data structure that was saved in the YAML file will overwrite the existing data structure,
updating it to reflect the loaded assembly.

5. Implementation Plan

Fig. 7: Gantt Chart (February 5, 2019)

Our implementation plan or project’s major development process was broken down into
three major phases: Graphical User Interface Creation, Data-Structure Creation, and
Plugin Framework and Integration. The Graphical User Interface consists of component,
place, transition, and dependency creation and manipulation from the user. The next
major development process is Data-Structure Creation. The Data-Structure creation
consists of saving all assembly objects that the user creates and their attributes. The
Data-Structure will play an important role in future plugin implementation. The Plugin
Framework and Integration consists of Code Generation, Deployment Simulation, and
Saving and Loading of user created assemblies. Each major areas will be developed
simultaneously throughout the semester. Certain sub-tasks will depend on other
development areas, such as file saving/loading and deployment simulation. These tasks

11

will be implemented later in the development phase once the tasks they depend on have
been completed. Each major development process was divided up for implementation
across the team as illustrated in the table below.

Team Member Tasks

Evan Russell GUI Creation, Data-Structure Creation, Deployment Simulation

Kyle Krueger Data-Structure Creation, Code Generation

Wyatt Evans File Saving and Loading, Documentation of Plugin Support

Melody Pressley Data-Structure Creation, File Saving and Loading

6. Conclusion

Software deployment can be a complex process; many solutions have been developed,
such as Ansible or Kubernetes, but these often lack performance, resulting in slow
deployment times. Madeus is a highly efficient software deployment model that leverages
any opportunities for parallelism, which significantly improves deployment times.

MAD is a Python implementation of the Madeus model, allowing users to program a
Madeus assembly and execute the representative deployment process. However, MAD
can be complicated and tedious to implement and its parallelism creates complexity when
it comes to understanding the dependencies between the different tasks in its deployment
process. It is also difficult to edit, because changing one element of an assembly could
require numerous other parts of the code to be changed.

Our Graphical User Interface will help visualize, create, and maintain the complex
parallelized deployment schemes that drive MAD. As a result, it will reduce the
complexity for the end-user wanting to use Madeus/MAD to deploy a distributed
software system.

Additionally, our plugin framework and the features that are implemented through this
framework will ensure the longevity of the software. The documentation we are
developing alongside MAB, as well as the open source nature of the software, will help

12

to facilitate the development of future plugins, so that as the needs of the developer
inevitably expand and change, MAB can change as well in order to better meet those
needs.

This document aims to explain the various parts of MAB, which are all working towards
alleviating the downsides of Madeus/MAD as well as further enhancing the software
deployment field as a whole. We are confident that these six major modules will result in
a complete and satisfying software that will survive, and be capable of evolving long
after this year, while also fulfilling the present needs of our sponsors.

13

